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Kohéarente und mesoskopische Systeme

Electron or hole transport in commercially available electronic devices is gov-
erned by various scattering mechanisms. On the other hand, devices based on
coherent transport (transport without scattering) are still at the developmental
stage. To understand the coherent length or dephasing length, let us first consider
an electron that undergoes an elastic collision, where the imitial, ¥;(r, t), and
final, ¥¢(r, t), wave functions are (Mitin et al.)

’(//i(r‘ [) = c...'/:}(clk.rundlr/[f(r‘ [) e e—!(/.).' Z ‘Ak’elk ¥ g —e “U:l[/(‘r),

where k and k' are the wave vectors before and after the scattering event. For
elastic scattering, we have k = k’, which means that the momentum is conserved,
and |Ay|? is the probability of finding the electron with a wave vector k' after
scattering. From Equation 5.179, one can obtain |'l/ff(",[)|2 — W/(r)l“’, which
means that the spatial distribution remains independent of time after scattering.
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Kohéarente und mesoskopische Systeme

For inelastic scattering, the electron wave {unction after scattering has different
energies and time dependencies according to the following:

. \ ik KX
wi(r,t) = g~ lok)t oik.r andy(r, 1) = Z Ape iwk)t,

k' k'+k

The time-dependent component of the wave function of the scattered electron
cannot be factored out of the sum, and |¥¢(r, t)|* is now a function of time. For
inelastic scattering, the electron preserves its quantum coherence for a distance
equal to or less than the inelastic scattering length, /;. In general, /; is larger than
the de Broglie wavelength. A comparison between various characteristic lengths
as compared to the de Broglie wavelength is shown in Fig.
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FIGURE 5.25 Intervals for the characteristic lengths:A, de Broglie wavelength; /., mean
free path; /;, inelastic scattering length; and /,, coherence length in semiconductor mate-
rials. As an example, the lengths are marked by circles for Si1 at T = 77 K, assuming that
the electron mobility equals 10* cm?®/V/s(after Mitinet et al.).
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Dephasierungslange
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The electrons’ dephasing length or coherent length, /,, is the distance that the
electrons travel before losing their quantum mechanical coherence, which is a
result of the large spreading of the wave function phases. The dephasing effect
1s caused by inelastic collisions, temperature spreading of phases, or both, which
leads to the assumption that the dephasing length is determined by the smaller
value of the inelastic length or the thermal diffusion length. The dephasing length,
ly, 1s thus the distance that the electron transport has quantum characteristics. Sys-
tems in which electrons maintain coherence and remain in phase during transport
are called mesoscopic systems, which have properties strongly depending on the
geometry of the sample, contacts, and quantum structures.
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Zener - Bloch - Oszillation
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One of the simplest examples of quantum
transport is electron’ transport in the absence of any scattering. A system with no
scattering i1s a perfect crystalline solid in which the equation of motion of the
electron is

dp ﬁdk £

T
The electron starts at the bottom of the energy band and moves along the E' versus
k curve until it reaches the Brillouin zone edge. Since we have a perfect crystal,
the energy bands are periodic in the k-space. Thus, when the electron reaches the
zone edge, it is reflected and starts to lose its energy and then continues the cycle
under the influence of the electric field. The momentum of the electron changes
direction as the electron passes through the zone edges, leading to oscillations
in k-space (and consequently in the real space). These oscillations are called
Zener—Bolch oscillations, and their frequency is given by

ae& - ae&
Y v

=

where a is the lattice constant. For an electric field of the order of 107 V/m, the
frequency of the Zener—Bloch oscillations is ~ 1.21 x 10" Hz. This frequency
range 1s very important for high speed devices.

Niederdimensionale HL-Systeme -2 5

e DJAs SRR,




Optoelectronic
A

IL(‘ UNIVERSITAT PADERBORN W™

Die Universitdt der Informationsgesellschaft et Do,

Tunneln durch einfache Barriere
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FIGURE 5.26 A single barrier with Fermi electron sea on both sides is shown for (a)
small bias and (b) large bias.
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Tunneln durch einfache Barriere

An expression for the conductance of a system in which the phase coherence is
maintained can be derived for different contacts and sample geometries. Consider
a one-dimensional simple barrier under bias voltage, as shown in Fig. 5.26. Under
a small bias voltage, as shown in Fig. 5.26a, the electrons tunnel from both left
to right and right to left. Under a bias voltage, each side of the barrier has its
own Fermi energy level with a difference of Ef — Ef = eV. As the bias voltage
is increased, as shown in Fig. 5.26b, the electron tunneling from right to left
becomes negligible.

—¢

The electric current depends on the tunneling transmission coefficient and is
given by

2e r ) L Ze g L -
= . F(E, ER)v(k)T (k)dk = = f(E, Eg)T(E)IE,
T L
Ej Ey,
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Tunneln durch einfache Barriere
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the conductance, (&, as
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Tunneln durch einfache Barriere
3 9 2¢2
G = %fﬁ”ﬁ — Ep)T(E)dE = ; T(Eg).

E]

The factor e“/h is known as the guantum unit of conductance and the corre-

sponding resistance is R = h/e* & 25.829 kQ. Equation shows that the
conductance is independent of the length of the sample, and depends solely on
the transmission coefficient. For T'(Eg)1, the conductance is 2e*/h, which is inde-
pendent of the sample geometry. For higher temperatures, the above §-function

approximation is no longer valid and the integration of Equation 5.188 should
be performed.

The conductance result expressed in Equation ls very simplistic since
it is derived for only one mode or one path that the electron will take when
traveling from one contact to another through the sample. In reality, one has to
sum the electron contributions from all different paths the electron can take as

it moves from one contact to another. For many different paths or propagating
states, Equation can be written as

2e? ]
L ?z T(Eg,m,n) =2Gg ZT{Er,m,n),

mt,n

where Gg = e/ h and the sum is over all electron states, m and n, with energy
E < Eg. Equation is called the Landauer formula. Each channel or mode
has two quantum numbers, m and n, where, for example, m represents the mode
or state of the electron when leaving the left contact and n represents the mode or
state of the electron when arriving at the right contact, as illustrated in Fig. 5.27.
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Kohéarenter Transport durch Bauelement

Landauer formalism provides a means to understand the transport in terms of
scattering process, as illustrated in Fig, 5.27, where, for mesoscopic structures,
the electron waves can flow from one contact to maintain phase coherence. The
phase coherence is maintained at low temperatures at which scattering processes
due to phonons are suppressed. Thus, Landaver formalism 1s valid only at low
temperatures and small bias voltages. An important property of phase coherence
transport is the fluctuation observed in the conductivity (resistivity) as a function
of magnetic field. In Equation 5.190, the sum is over the electron contribution

zlll\lf 1;11

—»  Scattering —3»
<+ center

contact
S_Z
contact

Left

2,

mn

FIGURE 5.27 Tllustration of coherent transport through a device with two leads. Each
contact has many propagating states.
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Leitwert als Funktion der Gatespannung
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FIGURE 5.28 Conductance as a function of the gate voltage is plotted for GaAs/AlGaAs
high electron mobility transistor (after van Wees ef al.). The inset 15 a sketch of the
MODFET showing the slit gate, drain, and source.
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FIGURE 5.29 Four-probe measurements of the conductance of a scattering center (tun
neling barrier) showing the four terminals at which the current and voltages can be
measured.

The conductance is discussed briefly for a mesoscopic system of two leads and
one electron path and for a system with two contacts and many electron paths.
For a mesoscopic system with four contacts or probes, as shown in Fig. 7.29,
the conductance can be derived as (Singh 2003 and Davies 1998)

Gd_-prchc = = —
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where T is the transmission coefficient and R is the reflection coefficient. Recall
that T+R = 1. It appears that there is a difference in the conductance obtained
from two probes and four probes. For a weak transmitting barrier, there is a
small difference between the conductance obtained from two probes and that
obtained from four probes. But when the barrier is transparent or the transmission
coefficient is approaching unity, the conductance expressed in Equation 5.191
approaches infinity, while the conductance obtained for two probes and expressed
in Equation 5.189 takes the value 2¢2/h. This behavior may be explained as
follows: for a system in which the scattering center or the barrier is absent, the
distribution of the electrons should be the same everywhere within the channel
such that the voltage probe, in the case of a four-probe experiment, should read
the same value at any point. Thus, the voltage difference between any two points
1§ zero, giving rise to an infinite value for the conductance. When a bias voltage
is applied to the two-probe configuration, an extra voltage appears because of an
extra contact resistance of #/(2e?) in series with the sample. The extra resistance
exists, even though the electrons are transmitted without any scattering.
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